
Atomic Structure and Atomic Spectra (CH 13)

 A hydrogenic atom is a one-electron atom or ion of general atomic 
number Z; H, He+, Li2+,…

 A many-electron atom is an atom or ion with more than one 
electron.

 The SWE can be solved exactly only for hydrogenic atoms.



Atomic Spectra of H atoms

 The atomic emission of excited H atoms gives a line spectra. 

 Johann Balmer noted that the wavenumbers of the these lines fit 
the expression: 

 These emissions are now called the Balmer series.
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Atomic Spectra of H atoms

 The atomic emission of excited H atoms gives a line spectra. 

 Additional lines were discovered in the UV and the infrared and 
Rydberg noted that the lines fit the general expression. 

 Different  values of n1 give a series of lines:

 n1=1 (Lyman series) n2=2,3,4,…

 n1=2 (Ballmar series) n2=3,4,5,…

 n1=3 (Paschen series) n2=4,5,6,…
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Atomic Spectra of H atoms

 Energy is conserved when a 
photon is emitted, so the 
difference in energy of the atom 
before and after the emission 
event must be equal to the 
energy of the photon emitted.

 Therefore, the n1 & n2 integers in 
the Rydberg equation must 
correspond to quantum numbers 
for the hydrogen atom.
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Atomic Spectra of H atoms

UV emissions

Visible Emissions Infrared emissions



The SWE for Hydrogenic Atoms

 The potential energy for an electron in a hydrogenic atom is due 
to coulombic attraction between the electron and the nucleus.
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The SWE for Hydrogenic Atoms

 The Hamiltonian must have terms for the KE of the nucleus, KE of 
electron, and any potential energy.

 We can separate the relative motion of the electron and the 
nucleus from the motion of the atom as a whole giving two 
equations:

1. One describing the free translational motion of a particle of mass 
m=me+mN.  We’ve already solved this problem in CH 11.

2. One describing the internal motion of the electron relative to the 
nucleus.

 From now on, we’ll speak only in terms of the internal, relative 
coordinates.



The SWE for Hydrogenic Atoms

 The potential energy is independent of angle allowing the wave 
function to be seperable into radial and angular components.

Y(r,q,f)=R(r)Y(q,f)

 Results in two separate diff equations to solve:

 The particle on a sphere is the solution to the angular part.

 Now we just need the solution to the radial part. 



The Radial Part of the SWE

 Write the Hamiltonian.

 Define Veff.

 For zero orbital angular 
momentum, Veff = Coulombic 
potential energy.

 For nonzero orbital angular 
momentum, the centrifugal 
effect gives rise to a positive 
contribution which is very large 
near the nucleus.



The Radial Solution

 Solving the radial equation gives energies:

 The wavefunctions are shown in table 13.1, p. 349.



The Radial Wavefunctions



Atomic Orbitals

 An atomic orbital is a one-electron wavefunction for an electron in 
an atom.

 Each AO is defined by three quantum numbers: n, l, ml

Principal quantum number: n = 1,2,3,… {Determines the energy}

Angular momentum quantum number: l=0,1,2,…,n-1

Magnetic quantum number: ml=l,l-1,l-2,…,-l



Atomic Energy Levels

 The energy levels are determined by the 
principal quantum number:

 Gives almost exact agreement with 
experimental values.  Disagreement arises 
from relativistic effects, which are not treated 
by the non-relativistic SWE.

 Each energy level is n2-fold degenerate due 
to the different possible values for l and ml.

 Selection rules only allow certain transitions 
to occur:



Atomic Energy Levels

 We arbitrarily define an infinitely separated 
atom and electron to have zero energy.

 Negative energy implies a bound state.  

 The energy of the atom is lower than that of 
an infinitely separated stationary electron and 
nucleus.

 Positive energy corresponds to an unbound 
state.

 The energies of an unbound electron are not 
quantized and therefore form a continuum of 
states.

 The ionization energy is the minimum amount 
of energy required to remove an electron 
from the ground state to the continuum.



Shells and Subshells

 An orbital with a given value of n forms a single shell of the atom.

 Shells are referred to by letters:

n = 1 2 3 4

K L M N

Orbitals with the same n, but different values of l form subshells.

l = 0 1 2 3 4 5 6

s p d f g h i



Shells and Subshells



s orbitals

 All s orbitals are spherically symmetric becauses there’s no 
angular dependence in Y0,0(q,f).  (See table 12.3 p. 334)

 There are radial nodes where the polynomial factor (see table 
13.1 p. 349) is equal to zero.

 Demonstrate for 2s orbital:



Electron probability density

 It is common to depict the 
probability density of the electron 
|Y|2 by the density of shading.

 On the left, we have the 
probability density of a 1s and 2s 
orbital.  Note the node in the 2s 
orbital.



Boundary Surface (Size of an orbital)

 Sometimes the size of an orbital 
is represented as a boundary 
surface, the surface that captures 
about 90% of the the electron 
probability.



Orbital Size 

 What is the mean radius of a 1s 
orbital?

 In general:
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 Average radius increases as n 
increases.

 For a given value of n, the mean 
radius lies in the order d < p < s.



Radial Distribution Functions

 The probability of finding an electron in any region is given 
through |Y|2.

 But consider the probability of finding the electron anywhere on a 
spherical shell of thickness dr at a radius r.

 P(r)dr gives the probability of finding the electron anywhere in 
this shell and is termed the radial distribution function.



Radial Distribution Functions for 1s orbital

 Define P(r) for a 1s orbital.

 P(0)=0; P(r)0 as rinfinity

 Find the most probable radius for 
a 1s electron.



p orbitals

 For nonzero l, the centrifugal effect goes to infinity as r goes to 
zero.

 This causes the potential energy to go to infinity at r=0.

 There’s therefore no probability of the electron being at the nucleus.

 Show the three p orbitals, which are distinguised by three 
different values for ml.



pz orbital

 The xy-plane is the nodal plane, 
hence the origin of the “pz-
orbital”. 

 Although the density is positive 
everywhere, different shading 
indicates the phase of Y. 
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px and Py orbitals

 These are obtained by taking 
linear combination of the P+1 and 
P-1.

 The result gives real functions 
which are still valid solutions to 
the SWE.  Show.



d orbitals

 d orbitals are formed the same way, by taking linear combinations 
of the oribitals with opposite values of ml.



Selection Rules

 Photons are bosons and have s=1.

 This angular momentum must be conserved when a photon is 
produced (emitted) or destroyed (absorbed). 

 For this conservation to occur l=±1.

 An electron in a d orbital (l=2) cannot make a transition into an s 
orbital (l=0) because the photon cannot carry away enough angular 
momentum.

 An s electron cannot make a transition to another s orbital because 
the no angular momentum is produced for the photon.

 n is unrestricted because it doesn’t relate to angular momentum.



Transition Dipole Moment

 The rate of transition is equivalent to either:

 The intensity of absorption of light

OR

 The intensity of emission of light

 The rate is proportional to the square of the transition dipole 
moment.

 Physically, the transition dipole moment is a measure of the ‘kick’ 
the electron gives to or receives from the electromagnetic field.

 The derivation of the transition dipole moment comes from time 
dependent perturbation theory.

 Define time dependent SWE.

 Deine the perturbation.



Grotrian Diagrams

 A Grotrian diagram summarizes 
the energies of the states and 
the transitions between them.

 This the Grotrian diagram for 
hydrogen.



The structure of many-electron atoms

 The wavefunction of a many-electron atom is a very complicated 
function of the coordinates of all the electrons. 

 Y(r1,r2,…ri) where ri is the vector from the nucleus to electron i.

 In the orbital approximation we assume that the electrons don’t 
interact, then the wavefunction can be written as a product of 
orbitals for each electron.



Pauli Principle

 The Pauli exclusion principle says that no more than two electrons 
may occupy a given orbital, and if two do occupy one orbital, then 
their spins must be paired.

 So for Li (Z=3) the first two electrons fill the 1s orbital and the third 
will go elsewhere.

 Comes from the more general Pauli Principle.

 The Pauli Principle states says that when two labels of any two 
fermions are exchanged, the total wavefunction must change sign 
and when two labels of any two bosons are exchanged the total 
wavefunction must NOT change signs.



Many-electron atoms subshell energies

 In many electron atoms, the 2s and 2p orbitals are generally not 
degenerate.  WHY?

 The 1s electrons repel the n=2 electrons.  

 The nuclear charge is shielded by the 1s electrons giving rise to an 
effective nuclear charge:

zeff = z – s

 The shielding constant s is different for 2s and 2p orbitals because 
they have different radial distribution functions.

 An s electron has greater penetration through the inner shells so is 
shielded less.  

 As a consequence of nuclear shielding, the subshell energies lie: 
s<p<d<f.



Aufbau “building up” principle

 The Aufbau principle says that electrons will fill the lowest energy 
orbitals first (each holding two electrons). 

1s 2s 2p 3s 3p 4s 3d 4p 5s

 The complicated order comes from the electron-electron repulsion 
which is important when orbitals have almost the same energy (4s 
& 3d).

 Example:  Using the orbital approximation, give the wavefunction 
for a carbon atom (Z=6).



Hund’s rule

 An atom in its ground state adopts a configuration with the 
greatest number of unpaired electrons.

 Hund’s rule comes from spin correlation which keeps parallel 
spinning electrons apart causing them to repel less.

 Proof:  Consider a two electron system w/ each electron in a two 
different degenerate orbitals.

 The antisymmetric wavefunction vanishes if r1=r2. 

 The symmetric wavefunctions do not vanish.

 Consequently, two electrons have different relative spatial distributions 
depending on whether their spins are parallel or not.

 Different spatial distributions means different Coulombic interactions and 
states with different energies.

 States with electrons having parallel spin will be lower in energy and will 
fill first.



Quantum Defects and Rydberg States

 The energy of many electron atoms does not generally vary as 
1/n2, but the energies of outermost electrons do if we account for 
shielding by the other Z-1 electrons.

 The binding energies of these electrons will be of the form ? 
(Recall Rydberg), but will be slightly lower in energy due to the 
Zeff being slightly larger than 1.  

 Introduce quantum defect d as a fudge factor.

 For very diffuse states, 1/n2 variation is valid.  These states are 
called Rydberg states.



Spin Orbit Coupling

 Spin-orbit coupling is best 
explained in terms of total 
angular momentum—a vector 
sum of orbital and spin angular 
momentum.

j=l+1/2

{same direction}

j=l-1/2       

{opposite direction}



Spin Orbit Coupling

 The magnetic field generated by a spinning electron interacts with 
the magnetic field generated by the orbiting electron.

 This causes a further splitting of the energy levels.
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Strength of Spin-Orbit Coupling

 The strength of Spin-Orbit Coupling depends on the nuclear 
charge.

 Imagine riding on an electron and seeing the nucleus orbit around 
you (much like the sun rising and setting).

 Since the ‘sun’ is charged, you would be at the center of a ring of 
current.

 The higher the charge, the greater the current, and therefore the 
stronger the magnetic field induced by the current on you.

 The magnetic field from this orbital motion interacts with the 
magnetic moment on the electron.

 As Z increases, the spin-orbit coupling increases.



Spin-Orbit coupling and Fine Structure

 Two spectral lines are 
observed when the p electron 
of an electronically excited 
alkali metal atom undergoes a 
transition and falls into a 
lower s orbital.

 One line is due to a transtion 
from a j=3/2 level.

 One line is due to a transition 
from a j=1/2 level.

 The two observed lines are 
called fine structure and are 
due to spin-orbit coupling.

The Na D lines



Term Symbols

 A term symbol conveys all the information the angular momentum 
quantum numbers of an atom (or molecule).

 Lower case letters are used to label orbitals, upper case letters 
are used to label overall states.

 We now of three quantum numbers associated with angular 
momentum:

 Spin angular momentum

 Orbital angular momentum

 A closed shell has zero orbital angular momentum because all the 
individual orbital angular momenta sum to zero.

 Total angular momentum

 Example:  Write the possible terms arising from 1s22s12p1

configuration.



Russel-Saunders coupling vs. jj-coupling

 Russell –Saunders Coupling

 Assumes no coupling between individual electron’s angular and spin 
momenta.

 J is from sum of all L and S.

 Work’s for light atoms.

 jj – coupling

 Spin and orbital momentum of each electron is coupled strongly.

 Must treat electron as particle with angular momentum j.

 S and L are not ‘true’ quantum numbers, only J.

 Selection rules for DS can be broken in heavy atoms because only DJ 
selection rule is valid.



Summary of all the energy level splitting.



The Zeeman Effect

 Further splitting can be caused if 
an atom is placed in a strong 
magnetic field.

 States with different ml values 
will interact differently with the 
magnetic field, lifting their 
degeneracies.

 Additional splitting can occur due 
to the magnetic moment of the 
spinning electrons.



Variational Method

 The orbital approximation is crude and gives energies that are 
much too low since electron repulsion is neglected.

 We can use the variational method to obtain a better 
wavefunction.

 If Y is a well-behaved function of the coordinates then

 If Y is the true ground state energy wavefunction, then the equality 
applies.

 Otherwise we use an approximate wavefunction (having correct 
boundary conditions), known as a trial wavefunction.  The variational 
energy will always be higher than the true ground state energy.
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Calculation of the Variational Energy

 A trial wavefunction that satisfies the boundary conditions for a 
particle in a box is Y=x(L-x). Calculate the variational energy for 

this function and show that it’s greater then Eg.s.



Variational Method

 We can add adjustable parameters to our trial wavefunction.

 The parameters are adjusted such to minimize our energy giving a 
result that is closer to the true ground state energy.

 For the helium atom, a good trial function would be 
Y=1s(1)1s(2)=?

 We could replace Z with Zeff = z – s to account for electron 
shielding and calculate the variational energy (which will be 
function of s).

 Solving for s that minimizes the variational energy will be an 
upper bound to the ground state energy.

 Eg.s. (experimental) = -79.0 eV

 This method           = -77.5 eV

 Not bad considering we’ve only adjusted one parameter.

 We can use more parameters or change the form of the the trial 
function to get an energy that is even closer to the “true” value.



Variational Method Limitations

 This method becomes impractical as the number of electrons 
increases because of the complicated electron-electron repulsion 
term that must be integrated.


