lave degree Fis given fP_{5} ## CHAPTER 2 SUBGRAPHS, PATHS AND CYCLES 2.1 Introduction Some basic concepts about graph theory are discussed in Chapter 1. Here, we develop the theory a little further. In this chapter, we give a few more basic concepts of graph theory, such as subgraph, spanning subgraph, walk, path, cycle and bipartite graph. We also present some important results and several examples on these concepts. ## 2.2 Subgraphs, Spanning and Induced Subgraphs Subgraphs **Definition**: A subgraph H of a graph G is a graph having all of its vertices and edges of G. **Definition:** If H is a subgraph of G, then G is a supergraph of H. We note that a graph G is itself a subgraph of G. Example 1. Draw two subgraphs of the following graph. Figure 2.1 $G_{;}$ Solution: The two subgraphs of G are shown below. #### Spanning Subgraphs Definition: A spanning subgraph of a graph G is a subgraph containing all vertices of G Example 2. Draw two spanning subgraphs of the graph G shown Figure 2.1. Solution: The following are two spanning subgraphs of G since eac of which contains all vertices of G. #### Induced Subgraphs Definition: The induced subgraph < S > of a graph G is the maxima subgraph of G with vertex set S where S is any set of vertices of G. It is clear that two vertices of S are adjacent in $\langle S \rangle$ if and only if they are adjacent in G. Definition: For any set F of edges of a graph G, the edge induced subgraph < F > of G is the subgraph of G whose vertex set is the set of ends of edges of F and whose edge set is F. Example 3. Draw an induced subgraph of the graph G shown in Figure 2.1. Solution: The following subgraph G_s of G is the maximal subgraph of G with vertex set $\{1, 3, 4, 5\}$. Therefore G_s is an induced subgraph of G. Example 4: Draw an edge induced subgraph of the graph G shown in Figure 2.1. Solution: An edge induced subgraph G_6 of G is given below. Example 5. Find all spanning subgraphs of the following graph G. G: Solution: The following are all spanning subgraphs of G, since each of which contains all vertices of G. Example 6. Show that \hat{K}_p is a spanning subgraph of K_p Solution. The graph \vec{R}_p is a null graph with p vertices. It contains at vertices of $K_{\rm p}$. Therefore $\,\vec{K}_{\rm p}\,$ is a spanning subgraph of $K_{\rm p}$ Example 7. Show that an induced subgraph of a complete graph is complete. Solution: Let F be a vertex set of a complete graph G. Let S be a subset of V. Then $\langle S \rangle$ is an induced subgraph of G. Since every pair of vertices of G are adjacent, it follows that every pair of vertices of < S > are adjacent. Hence < S > is complete. Example 8. Find all spanning subgraphs of K_g Solution: The following are spanning subgraphs of K, Example 9. Show that if every induced subgraph of a graph G with p≥2 vertices is a null graph, then G is a null graph. Solution: Let S be any set of vertices of G. Then the induced subgraph So is the maximal subgraph of G and is a null graph. Since S is an arbitary vertex set of G it follows that <S> containing all vertices of Gis a null graph. Hence G is a null graph. Definition: The removal of a vertex v from a graph G yields the Definition: The removal of G containing all vertices of G except v and all edges subgraph G-v of G containing all vertices of G except v and all edges not incident with v. petinition. The removal of an edge e from a graph G yields the pediation. The containing all vertices of G and all edges of G except e. pelinima: If u and v are not adjacent vertices in G, then the addition perinting G be yields the graph G+e with the vertex set V and the of an edge G are G. edge set E co(e) We note that G-v is a spanning subgraph of G. Geris the smallest supergraph of G. 1) Example 10. Draw the following subgraphs for the graph G shown below G-e and also 3) Draw the graph $G + e_1$ where u_1 and u_2 are not adjacent vertices of G and e = u,u, Solution $$G-e^{\frac{1}{2}}$$ $G + e^{\frac{1}{2}}$ e^{\frac{1}{$ Figure 2.2 - The removal of a vertex v from G produces the subgraph G. of G shown in Figure 2.2(a). - The removal of an edge e from G produces the subgraph of G shown in Figure 2.2(b). - The addition of an edge e₁ to the graph G gives the graph G+e₁ shown in Figure 2.2(c). This graph is the smalle supergraph of G. Example 11. Show that the removal of a vertex v from $K_{\rho}(p)$ produces a complete graph K_{ρ} . Solution: Let v be a vertex of $K_{\rho}(p \ge 2)$. Then $K_{\rho} - v$ is the subgraph K_{ρ} and it is obtained by the removal of the vertex v from K_{ρ} togeth, with all edges incident with v. This implies that $K_{\rho} - v$ is a complete graph with p-1 vertices. Thus $$K_{\rho} - \nu = K_{\rho-1}$$ From Example 11, we see that if $G=K_{\rho}$, then G and G-v a both regular graphs. But this result is not true for any regular graph. Now we have the result. Example 12. Show that, by an example, if G is regular, then G-v not regular. Solution: Suppose G is a cycle. Then G is 2-regular. The removal of any vertex v from G produces a path. Clearly a path is not regular. Thus G-v is not regular. #### Exercise - 1. Draw all spanning subgraphs of i) K_4 ii) $K_4 e$ - ii) $K_a e$ iii) K_{p-p} - 2. Draw all spanning subgraphs of $(C_p$ defined in section 2.3) i) C_s ii) $C_s - e$ iii) $C_s - v$ - Draw all spanning subgraphs of (P_p defined in section 2.3) i) P_p ii) P_p - 4. Draw all spanning subgraphs of $(K_{m,n}$ defined in section 2.5) i) $K_{l,2}$ ii) $K_{2,2} - e$ iii) $K_{l,3}$ - Show that every graph with p vertices is isomorphic to a subgraph of K_s. - Show that if every induced subgraph of a graph G is complete, then G is complete. - Prove or disprove: If G is regular, then G-v is regular. - 8. Draw three different connected subgraphs of K_{μ} . - . Draw - 1) two spanning subgraphs - 2) two induced subgraphs of the following graphs. - 10. Define - i) a spanning subgraph of a graph - ii) an induced subgraph of a graph. ## 2.3 Paths and Cycles Definition: Let u and v be vertices of graph G. A u-v walk of a graph G is an alternating sequence of vertices and edges of G beginning v vertex u and ending with vertex v, such that every edge is incident v two vertices immediately proceeding and following it. Definition: The vertices u and v are called the initial and termine vertices of a u-v-walk respectively and other vertices its internal vertices. Definition: The number of occurences of edges in a walk is called length. Definition: A walk is called trivial if it has not edges. Definition: A u-v walk is closed if u=v and is open otherwise. Definition: A walk is a trail if all the edges in it are distinct. Definition: A walk is a path if all its vertices (and then necessarily) the edges) are distinct. Clearly every path is a trail. But every trail need not be a pat Definition: A u-v path is closed if u=v. Definition: A nontrivial closed path is a cycle. A nontrivial closed path of a graph G is called a cycle of G Definition: A cycle is odd or even if its length is odd or even. Definition: A cycle of length n is an n-cycle Definition: A 3-cycle is called a triangle. A graph of order p which is a path or cycle is denoted by P_p or C_n respectively. Example 13. Give an example of a walk, a trail, a path and a cycle. Solution: Figure 2.3 In the graph of Figure 2.3, - 1) $v_1 e_1 v_2 e_2 v_3 e_2 v_2 e_3 v_5 e_6 v_3 e_8 v_4$ is a $v_1 v_4$ walk which is not a trail, since e_2 appears twice. - 2) $v_1 e_1 v_2 e_3 v_3 e_4 v_1 e_3 v_3 e_6 v_4$ is a $v_1 v_4$ trail which is not a path, since v_1 appears twice. - 3) $v_1 e_1 v_2 e_2 v_3 e_6 v_5$ is a $v_1 v_5$ path. - 4) $v_1 e_1 v_2 e_2 v_3 e_3 v_1 \text{ is a } v_1 v_1 \text{ cycle.}$ We now present a result that relates walks and paths. Theorem 2.1. Every u-v walk contains a u-v path. **Proof:** Let W be a u-v walk in a graph G. If W is closed, the result is trivial. Thus suppose W: u= u_0 , u_1 , u_2 , ..., u_n =v is an open u-v walk of a graph G. It may be the case here that a vertex has received more than one label. If no vertex of G occurs in W more than once then W_{i_1} , v path. Thus, we assume that there are vertices of G which occurs twice or more. Let j be the smallest positive integer such that the exists i < j with $u_i = u_i$. If the vertices $u_i, u_{i+1}, \dots, u_{i+1}$ are deleted u_i , then $u_i = u_i$ with $u_i = u_i$. If the vertices $u_i = u_i$, u_{i+1}, \dots, u_{i+1} are deleted $u_i = u_i$, then $u_i = u_i$ is obtained having fewer vertices than that $u_i = u_i$ is obtained having fewer vertices than that $u_i = u_i$ is a $u_i = u_i$ path. If this is not case, we continue the above procedure untils finally arriving at $u_i = u_i$ walk which is a $u_i = u_i$ path. Theorem 2.2. If G is a graph with $\delta(G) \ge k$, then G has a parlength k. **Proof:** Let v_1 be a vertex of G. Choose v_2 adjacent to v_1 . Since $\delta \ge k$, it follows that there exist at least k-1 vertices other than v_1 who are adjacent to v_2 . Choose $v_3 \ne v_1$ such that v_3 is adjacent to v_2 general, having chosen vertices v_1, v_2, \ldots, v_j where $1 \le i \le \delta(G)$, the exists a vertex $v_{j+1} \ne v_1, v_2, \ldots, v_j$ such that v_{j+1} is adjacent to v_1 . The process yields a path of length k in G. Theorem 2.3. A closed walk of odd length contains a cycle. Proof: Let $v = v_0$, v_1 , v_2 , ..., $v_n = v$ be a closed walk of odd leng Thus $n \ge 3$. We prove the result by induction. Suppose n=3. Then this walk is itself the cycle C_j . Hence result is true. Assume the result is true for all walks of length less than n. If the given walk of length n is itself a cycle, then the result true for n. If not, there exist two positive integers i and j such that $i \le i \ne 0$, $i \ne n$, and $v_i = v_j$. Now $$\begin{array}{ll} \text{and} & \begin{array}{ll} v_i, v_{i+1}, \dots, v_i \\ u = v_{ij}, v_1, \dots, v_{ij}, v_{j+1}, \dots, v_n = u \end{array} \end{array}$$ are closed walks contained in the given walk and sum of their lengths is n. Since n is odd, it follows that at least one of these walks is of odd length, which, by induction, contains a cycle. #### Exercise - Give an example of a path of length 3 in K. - Give an example of a closed walk of even length which does not contain a cycle. - In a connected graph, prove that any two longest paths have a vertex in common. - Prove that a connected graph with p≥ 2 vertices is a nontrivial path if and only if $$\sum_{i=1}^{p} \operatorname{deg} v_i = 4p - 6.$$ - 5. Show that if G is a graph with minimum degree $\delta(G) \ge 2$, then G contains a cycle of length at least $\delta(G) + 1$. - 6. Define i) a walk iii) a path iii) a path with an example. #### 2.4 Connectedness and Component **Definition:** Two vertices u and v of a graph G are said to be **connected** if there exists a u-v path in G. walls I welk at de being at a finite alles neters of vertices and edges of the form ye, which begins a ends withs vertices re edge appears move Then once in the sq. Such a Squescalled a walk or at real in Gy Ex > V2 E4 V6 E5 V4 E3 V3 & V1 E8 V2 V6 E6 V5 E7 V5 palls) In a walk a vertencer appear move then onep an open walk unwhich noverten appears more then once is called a simple path of a path En-> Vseryegv3 eg V2 "sa Path whereas 45 egys gy is un open walk but not a path **Definition:** A graph G is called a bipartite graph or bigraph if the vetex set V can be partitioned into two disjoint subsets V_1 and V_2 such that every edge in G joins a vertex of V_1 to a vertex of V_2 . **Definition:** A complete bipartite graph is a bipartite graph with vertex partition V_1 and V_2 such that each vertex of V_1 is joined to every vertex of V_2 . If V_1 contains m vertices and V_2 contains n vertices, then the complete bipartite graph is denoted by $K_{m,n}$. The graph $K_{1,n}$ is a star. Example 22. Show that the graph G of Figure 2.5(a) is a bipartite graph. $G: \begin{array}{c} v_1 & v_4 \\ \hline \\ v_2 & v_3 & v_5 \\ \hline \end{array}$ (a) Solution: The vertex set V of G can be partitioned into two subsets V_1 = $\{v_1, v_3\}$ and $V_2 = \{v_2, v_4, v_5\}$ and each edge of G joins a vertex of V, to a vertex of V, This graph is redrawn in Figure 2.5 (b) with V the top and V_2 at the bottom. This shows that G is bipartite. Example 23. Draw complete bipartite graphs $K_{1,3}$, $K_{2,2}$. Solution: The following are complete bipartite graphs $K_{L,i}$ and $K_{L,i}$ $$K_{l,j}$$: Example 24. Draw all complete bipartite graphs with 5 vertices, Solution: The following are complete bipartite graphs with 5 vertices Example 25. Show that the graph G shown below is a complete bipartite graph. Solution: The vertex set V of G can be partitioned into two disjoint sets $V_1 = \{v_p, v_p, v_d\}$ and $V_2 = \{v_p, v_p, v_d\}$ and each edge in G joins a vertex of V_1 to a vertex of V_2 and also each vertex of V_3 is joined to every vertex of V,. Thus G is a complete bipartite graph. Example 26. Find the number of vertices and edges in K Solution: The graph $K_{m,n}$ is a complete bipartite graph with vertex partition V_i and V_j . Then the number of vertices in V_i is m and that in V_j is n. Thus K_m has m+n vertices. The graph K_m , has vertex set $V = \{v_p, \dots, v_m, v_m, \dots, v_m\}$. Which can be partitioned into two disjoint subsets $V = \{v_p, \dots, v_m\}$ and $v_m = \{v_m, \dots, v_m\}$. Then $\deg v_m = n$ for $1 \le i \le m$ and $A_i = i \le m$. Then $\deg v_i = n$ for $1 \le i \le m$ and $\deg v_i = m$ for $V_j = V_{m-1} \times V_m$ $m+1 \le i \le m+n.$ $$\sum_{i=1}^{m+n} \deg v_i = \sum_{i=1}^{m} \deg v_i + \sum_{i=n+1}^{m+n} \deg v_i$$ = mn + nm =2mn = twice the number of edges (by Theorem 1.1.). Therefore K, has mn edges. Example 27. How many vertices and how many edges are there in complete bipartite graphs K_4 , and K_{11} ? Solution: It is known that if $K_{m,n}$ is complete bipartite graph, then it has m+n vertices and mn edges. Therefore K_{λ} , has 11 vertices and 28 edges. Also the complete bipartite graph K, 11 has 18 vertices and 77 edges. Example 28. Let G be a graph with p vertices and q edges. If G is bipartite, then show that $q \le \frac{p}{q}$ Solution: Let G be a bipartite graph with p vertices and q edges with vertex partition $|V_j| = m$ and $|V_j| = n$ p = m + nThen $q \leq mn$. and $p^2 = (m+n)^2 = m^2 + 2mn + n^2$ Therefore $4q \le 4mn$ $p^2 - 4q \ge m^2 + 2mn + n^2 - 4mn$ Thus $p^2-4q\geq (m-n)^2$ Or $(m-n)^2 \ge 0$, it follows that Since $$p^2 - 4q \ge 0$$ $$q \le \frac{p^2}{4}.$$ OF #### Exercise - Draw all bipartite graphs with $p \le 3$ vertices. 1. - Give an example of a bipartite graph which is regular. - Give an example of a bipartite graph G with 5 vertices in which every vertex of G lies on a cycle. - 4. Draw all complete bipartite graphs with $p \le 3$ vertices. - Draw all complete bipartite graphs with 6 vertices. - Show that the following graphs are complete bipartite graphs. 6. - Prove that if G is a regular bipartite graph with partite sets V, 7. and V_{ij} , then $V_{ij} = V_{ij}$. - Show that every subgraph of a bipartite graph is bipartite. 8. - 9. Define - i) a bipartite graph - a complete bipartite graph ii) - iii) a star with an example. # 2.6 Characterization of Bipartite Graphs We now present a chracterization of bipartite graphs in terms of its cycles. Theorem 2.8. A nontrivial graph is bipartite if and only if all of its cycles are even. **proof:** If G is a bipartite graph, then its vertex set V can be partitioned proof. It is subsets V_1 and V_2 , so that every edge of G joins a vertex of V_2 . Suppose a cycle G is a vertex of V_2 . with a vertex of V_p . Suppose a cycle $C: v_1 v_2 \dots v_n$ is in G. Assume $v_1 \in V_p$. Then $v_2 \in V_p$, $v_3 \in V_p$, $v_4 \in V_p$, ..., $v_n \in V_p$ is in G. Assume $v_1 \in V_p$. This implies that $v_2 \in V_p$. for some positive integer s. Thus C has even length. Conversely suppose without loss of generality, that G is connected, for otherwise, we can consider the components of G separately. Take any vertex $v_i \in V$. Let V_i consist of v_i and vertices at even distance from v_1 while $V_2 = V - V_p$. Since all cycles of G are even, every edge of G joins a vertex of V, with a vertex of V. For further suppose there is an edge uv joining two vertices of V, then the union of two shortest paths from u and v, and from v, to v together with the edge uv contains an odd cycle. Thus a contradiction. Thus no two vertices of V_i are adjacent. Similarly no two vertices of V_i are adjacent. Thus G is a bipartite graph. Example 29. Using characterization Theorem 2.8 show that the following graphs are bipartite graphs. The graph G_I has only even cycles. Therefore by Theor Solution: 1) 2.8, G, is bipartite. The graph G_2 has only even cycles. Thus by Theorem 2.8, ii) The graph G_3 has only even cycles. Thus by Theorem 2.8 iii) is bipartite. Example 30. Using characterization Theorem 2.8, show that following graphs are not bipartite graphs. Solution: - The graph G_1 contains a triangle. Thus by Theorem 2.8, G_2 1) not bipartite. - The graph G_2 contains a cycle of length 5 which is odd cyc ii) Thus by Theorem 2.8, G_2 is not bipartite. ### Exercise Which of the following graphs are bipartite graphs? - Which of the following graphs are bipartite graphs? 2. - i) K, - iii) C_{2n} , $n \ge 2$ - $V) P_{2n}, n \ge 2$ - iv) C_{2n+p} , $n \ge 1$ vi) P_{2n+p} , $n \ge 1$