lave degree

Fis given

 fP_{5}

CHAPTER 2 SUBGRAPHS, PATHS AND CYCLES

2.1 Introduction

Some basic concepts about graph theory are discussed in Chapter 1. Here, we develop the theory a little further. In this chapter, we give a few more basic concepts of graph theory, such as subgraph, spanning subgraph, walk, path, cycle and bipartite graph. We also present some important results and several examples on these concepts.

2.2 Subgraphs, Spanning and Induced Subgraphs

Subgraphs

Definition: A subgraph H of a graph G is a graph having all of its vertices and edges of G.

Definition: If H is a subgraph of G, then G is a supergraph of H. We note that a graph G is itself a subgraph of G.

Example 1. Draw two subgraphs of the following graph.

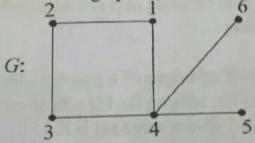


Figure 2.1

 $G_{;}$

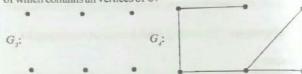
Solution: The two subgraphs of G are shown below.

Spanning Subgraphs

Definition: A spanning subgraph of a graph G is a subgraph containing all vertices of G

Example 2. Draw two spanning subgraphs of the graph G shown Figure 2.1.

Solution: The following are two spanning subgraphs of G since eac of which contains all vertices of G.



Induced Subgraphs

Definition: The induced subgraph < S > of a graph G is the maxima subgraph of G with vertex set S where S is any set of vertices of G.

It is clear that two vertices of S are adjacent in $\langle S \rangle$ if and only if they are adjacent in G.

Definition: For any set F of edges of a graph G, the edge induced subgraph < F > of G is the subgraph of G whose vertex set is the set of ends of edges of F and whose edge set is F.

Example 3. Draw an induced subgraph of the graph G shown in Figure 2.1.

Solution: The following subgraph G_s of G is the maximal subgraph of G with vertex set $\{1, 3, 4, 5\}$. Therefore G_s is an induced subgraph of G.

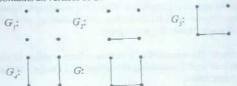
Example 4: Draw an edge induced subgraph of the graph G shown in Figure 2.1.

Solution: An edge induced subgraph G_6 of G is given below.

Example 5. Find all spanning subgraphs of the following graph G.

G:

Solution: The following are all spanning subgraphs of G, since each of which contains all vertices of G.



Example 6. Show that \hat{K}_p is a spanning subgraph of K_p

Solution. The graph \vec{R}_p is a null graph with p vertices. It contains at vertices of $K_{\rm p}$. Therefore $\,\vec{K}_{\rm p}\,$ is a spanning subgraph of $K_{\rm p}$

Example 7. Show that an induced subgraph of a complete graph is complete.

Solution: Let F be a vertex set of a complete graph G. Let S be a subset of V. Then $\langle S \rangle$ is an induced subgraph of G. Since every pair of vertices of G are adjacent, it follows that every pair of vertices of < S > are adjacent. Hence < S > is complete.

Example 8. Find all spanning subgraphs of K_g

Solution: The following are spanning subgraphs of K,

Example 9. Show that if every induced subgraph of a graph G with p≥2 vertices is a null graph, then G is a null graph.

Solution: Let S be any set of vertices of G. Then the induced subgraph So is the maximal subgraph of G and is a null graph. Since S is an arbitary vertex set of G it follows that <S> containing all vertices of Gis a null graph. Hence G is a null graph.

Definition: The removal of a vertex v from a graph G yields the Definition: The removal of G containing all vertices of G except v and all edges subgraph G-v of G containing all vertices of G except v and all edges not incident with v.

petinition. The removal of an edge e from a graph G yields the pediation. The containing all vertices of G and all edges of G except e.

pelinima: If u and v are not adjacent vertices in G, then the addition perinting G be yields the graph G+e with the vertex set V and the of an edge G are G. edge set E co(e)

We note that

G-v is a spanning subgraph of G.

Geris the smallest supergraph of G. 1)

Example 10. Draw the following subgraphs for the graph G shown below

G-e and also 3) Draw the graph $G + e_1$ where u_1 and u_2 are not adjacent vertices of

G and e = u,u,

Solution

$$G-e^{\frac{1}{2}}$$
 $G + e^{\frac{1}{2}}$
 $G + e^{\frac{1}{$

Figure 2.2

- The removal of a vertex v from G produces the subgraph G. of G shown in Figure 2.2(a).
- The removal of an edge e from G produces the subgraph of G shown in Figure 2.2(b).
- The addition of an edge e₁ to the graph G gives the graph G+e₁ shown in Figure 2.2(c). This graph is the smalle supergraph of G.

Example 11. Show that the removal of a vertex v from $K_{\rho}(p)$ produces a complete graph K_{ρ} .

Solution: Let v be a vertex of $K_{\rho}(p \ge 2)$. Then $K_{\rho} - v$ is the subgraph K_{ρ} and it is obtained by the removal of the vertex v from K_{ρ} togeth, with all edges incident with v. This implies that $K_{\rho} - v$ is a complete graph with p-1 vertices. Thus

$$K_{\rho} - \nu = K_{\rho-1}$$

From Example 11, we see that if $G=K_{\rho}$, then G and G-v a both regular graphs. But this result is not true for any regular graph. Now we have the result.

Example 12. Show that, by an example, if G is regular, then G-v not regular.

Solution: Suppose G is a cycle. Then G is 2-regular. The removal of any vertex v from G produces a path. Clearly a path is not regular. Thus G-v is not regular.

Exercise

- 1. Draw all spanning subgraphs of i) K_4 ii) $K_4 e$
 - ii) $K_a e$ iii) K_{p-p}

- 2. Draw all spanning subgraphs of $(C_p$ defined in section 2.3) i) C_s ii) $C_s - e$ iii) $C_s - v$
- Draw all spanning subgraphs of (P_p defined in section 2.3)
 i) P_p ii) P_p
- 4. Draw all spanning subgraphs of $(K_{m,n}$ defined in section 2.5) i) $K_{l,2}$ ii) $K_{2,2} - e$ iii) $K_{l,3}$
- Show that every graph with p vertices is isomorphic to a subgraph of K_s.
- Show that if every induced subgraph of a graph G is complete, then G is complete.
- Prove or disprove: If G is regular, then G-v is regular.
- 8. Draw three different connected subgraphs of K_{μ} .
- . Draw
 - 1) two spanning subgraphs
 - 2) two induced subgraphs of the following graphs.

- 10. Define
 - i) a spanning subgraph of a graph
 - ii) an induced subgraph of a graph.

2.3 Paths and Cycles

Definition: Let u and v be vertices of graph G. A u-v walk of a graph G is an alternating sequence of vertices and edges of G beginning v vertex u and ending with vertex v, such that every edge is incident v two vertices immediately proceeding and following it.

Definition: The vertices u and v are called the initial and termine vertices of a u-v-walk respectively and other vertices its internal vertices.

Definition: The number of occurences of edges in a walk is called length.

Definition: A walk is called trivial if it has not edges.

Definition: A u-v walk is closed if u=v and is open otherwise.

Definition: A walk is a trail if all the edges in it are distinct.

Definition: A walk is a path if all its vertices (and then necessarily) the edges) are distinct.

Clearly every path is a trail. But every trail need not be a pat

Definition: A u-v path is closed if u=v.

Definition: A nontrivial closed path is a cycle.

A nontrivial closed path of a graph G is called a cycle of G

Definition: A cycle is odd or even if its length is odd or even.

Definition: A cycle of length n is an n-cycle

Definition: A 3-cycle is called a triangle.

A graph of order p which is a path or cycle is denoted by P_p or C_n respectively.

Example 13. Give an example of a walk, a trail, a path and a cycle.

Solution:

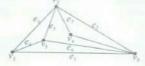


Figure 2.3

In the graph of Figure 2.3,

- 1) $v_1 e_1 v_2 e_2 v_3 e_2 v_2 e_3 v_5 e_6 v_3 e_8 v_4$ is a $v_1 v_4$ walk which is not a trail, since e_2 appears twice.
- 2) $v_1 e_1 v_2 e_3 v_3 e_4 v_1 e_3 v_3 e_6 v_4$ is a $v_1 v_4$ trail which is not a path, since v_1 appears twice.
- 3) $v_1 e_1 v_2 e_2 v_3 e_6 v_5$ is a $v_1 v_5$ path.
- 4) $v_1 e_1 v_2 e_2 v_3 e_3 v_1 \text{ is a } v_1 v_1 \text{ cycle.}$

We now present a result that relates walks and paths.

Theorem 2.1. Every u-v walk contains a u-v path.

Proof: Let W be a u-v walk in a graph G. If W is closed, the result is trivial. Thus suppose W: u= u_0 , u_1 , u_2 , ..., u_n =v is an open u-v walk of a graph G. It may be the case here that a vertex has received more than

one label. If no vertex of G occurs in W more than once then W_{i_1} , v path. Thus, we assume that there are vertices of G which occurs twice or more. Let j be the smallest positive integer such that the exists i < j with $u_i = u_i$. If the vertices $u_i, u_{i+1}, \dots, u_{i+1}$ are deleted u_i , then $u_i = u_i$ with $u_i = u_i$. If the vertices $u_i = u_i$, u_{i+1}, \dots, u_{i+1} are deleted $u_i = u_i$, then $u_i = u_i$ is obtained having fewer vertices than that $u_i = u_i$ is obtained having fewer vertices than that $u_i = u_i$ is a $u_i = u_i$ path. If this is not case, we continue the above procedure untils finally arriving at $u_i = u_i$ walk which is a $u_i = u_i$ path.

Theorem 2.2. If G is a graph with $\delta(G) \ge k$, then G has a parlength k.

Proof: Let v_1 be a vertex of G. Choose v_2 adjacent to v_1 . Since $\delta \ge k$, it follows that there exist at least k-1 vertices other than v_1 who are adjacent to v_2 . Choose $v_3 \ne v_1$ such that v_3 is adjacent to v_2 general, having chosen vertices v_1, v_2, \ldots, v_j where $1 \le i \le \delta(G)$, the exists a vertex $v_{j+1} \ne v_1, v_2, \ldots, v_j$ such that v_{j+1} is adjacent to v_1 . The process yields a path of length k in G.

Theorem 2.3. A closed walk of odd length contains a cycle.

Proof: Let $v = v_0$, v_1 , v_2 , ..., $v_n = v$ be a closed walk of odd leng Thus $n \ge 3$.

We prove the result by induction.

Suppose n=3. Then this walk is itself the cycle C_j . Hence result is true.

Assume the result is true for all walks of length less than n.

If the given walk of length n is itself a cycle, then the result true for n.

If not, there exist two positive integers i and j such that $i \le i \ne 0$, $i \ne n$, and $v_i = v_j$. Now

$$\begin{array}{ll} \text{and} & \begin{array}{ll} v_i, v_{i+1}, \dots, v_i \\ u = v_{ij}, v_1, \dots, v_{ij}, v_{j+1}, \dots, v_n = u \end{array} \end{array}$$

are closed walks contained in the given walk and sum of their lengths is n. Since n is odd, it follows that at least one of these walks is of odd length, which, by induction, contains a cycle.

Exercise

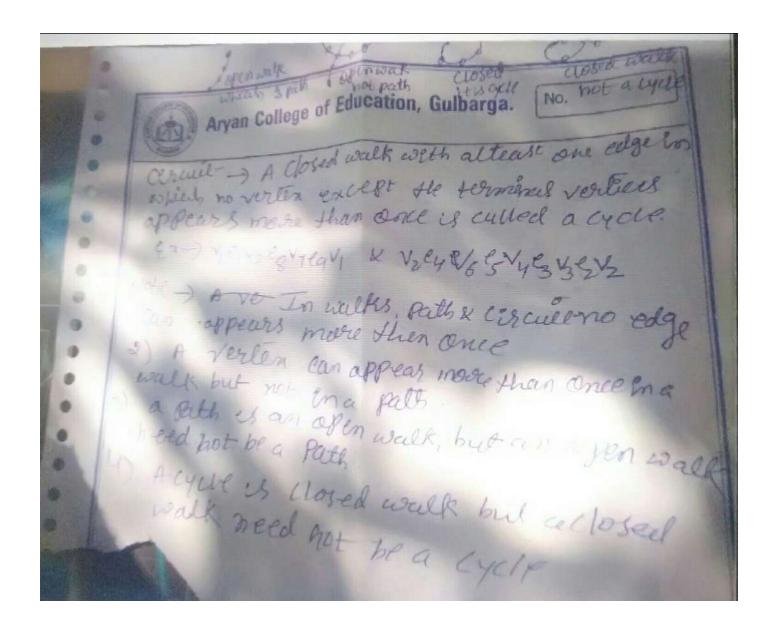
- Give an example of a path of length 3 in K.
- Give an example of a closed walk of even length which does not contain a cycle.
- In a connected graph, prove that any two longest paths have a vertex in common.
- Prove that a connected graph with p≥ 2 vertices is a nontrivial path if and only if

$$\sum_{i=1}^{p} \operatorname{deg} v_i = 4p - 6.$$

- 5. Show that if G is a graph with minimum degree $\delta(G) \ge 2$, then G contains a cycle of length at least $\delta(G) + 1$.
- 6. Define
 i) a walk
 iii) a path
 iii) a path
 with an example.

2.4 Connectedness and Component

Definition: Two vertices u and v of a graph G are said to be **connected** if there exists a u-v path in G.



walls I welk at de being at a finite alles neters of vertices and edges of the form ye, which begins a ends withs vertices re edge appears move Then once in the sq. Such a Squescalled a walk or at real in Gy Ex > V2 E4 V6 E5 V4 E3 V3 & V1 E8 V2 V6 E6 V5 E7 V5 palls) In a walk a vertencer appear move then onep an open walk unwhich noverten appears more then once is called a simple path of a path En-> Vseryegv3 eg V2 "sa Path whereas 45 egys gy is un open walk but not a path

Definition: A graph G is called a bipartite graph or bigraph if the vetex set V can be partitioned into two disjoint subsets V_1 and V_2 such that every edge in G joins a vertex of V_1 to a vertex of V_2 .

Definition: A complete bipartite graph is a bipartite graph with vertex partition V_1 and V_2 such that each vertex of V_1 is joined to every vertex of V_2 . If V_1 contains m vertices and V_2 contains n vertices, then the complete bipartite graph is denoted by $K_{m,n}$. The graph $K_{1,n}$ is a star.

Example 22. Show that the graph G of Figure 2.5(a) is a bipartite graph.

 $G: \begin{array}{c} v_1 & v_4 \\ \hline \\ v_2 & v_3 & v_5 \\ \hline \end{array}$ (a)

Solution: The vertex set V of G can be partitioned into two subsets V_1 = $\{v_1, v_3\}$ and $V_2 = \{v_2, v_4, v_5\}$ and each edge of G joins a vertex of

V, to a vertex of V, This graph is redrawn in Figure 2.5 (b) with V the top and V_2 at the bottom. This shows that G is bipartite.

Example 23. Draw complete bipartite graphs $K_{1,3}$, $K_{2,2}$.

Solution: The following are complete bipartite graphs $K_{L,i}$ and $K_{L,i}$

$$K_{l,j}$$
:

Example 24. Draw all complete bipartite graphs with 5 vertices,

Solution: The following are complete bipartite graphs with 5 vertices

Example 25. Show that the graph G shown below is a complete bipartite graph.

Solution: The vertex set V of G can be partitioned into two disjoint sets $V_1 = \{v_p, v_p, v_d\}$ and $V_2 = \{v_p, v_p, v_d\}$ and each edge in G joins a vertex of V_1 to a vertex of V_2 and also each vertex of V_3 is joined to every vertex of V,. Thus G is a complete bipartite graph.

Example 26. Find the number of vertices and edges in K

Solution: The graph $K_{m,n}$ is a complete bipartite graph with vertex partition V_i and V_j . Then the number of vertices in V_i is m and that in V_j is n. Thus K_m has m+n vertices.

The graph K_m , has vertex set $V = \{v_p, \dots, v_m, v_m, \dots, v_m\}$. Which can be partitioned into two disjoint subsets $V = \{v_p, \dots, v_m\}$ and $v_m = \{v_m, \dots, v_m\}$. Then $\deg v_m = n$ for $1 \le i \le m$ and $A_i = i \le m$. Then $\deg v_i = n$ for $1 \le i \le m$ and $\deg v_i = m$ for $V_j = V_{m-1} \times V_m$ $m+1 \le i \le m+n.$

$$\sum_{i=1}^{m+n} \deg v_i = \sum_{i=1}^{m} \deg v_i + \sum_{i=n+1}^{m+n} \deg v_i$$

= mn + nm

=2mn

= twice the number of edges (by Theorem 1.1.). Therefore K, has mn edges.

Example 27. How many vertices and how many edges are there in complete bipartite graphs K_4 , and K_{11} ?

Solution: It is known that if $K_{m,n}$ is complete bipartite graph, then it has m+n vertices and mn edges. Therefore K_{λ} , has 11 vertices and 28 edges. Also the complete bipartite graph K, 11 has 18 vertices and 77 edges.

Example 28. Let G be a graph with p vertices and q edges. If G is

bipartite, then show that $q \le \frac{p}{q}$

Solution: Let G be a bipartite graph with p vertices and q edges with vertex partition $|V_j| = m$ and $|V_j| = n$

p = m + nThen

 $q \leq mn$. and $p^2 = (m+n)^2 = m^2 + 2mn + n^2$ Therefore

 $4q \le 4mn$

 $p^2 - 4q \ge m^2 + 2mn + n^2 - 4mn$ Thus

 $p^2-4q\geq (m-n)^2$ Or $(m-n)^2 \ge 0$, it follows that Since

$$p^2 - 4q \ge 0$$
$$q \le \frac{p^2}{4}.$$

OF

Exercise

- Draw all bipartite graphs with $p \le 3$ vertices. 1.
- Give an example of a bipartite graph which is regular.
- Give an example of a bipartite graph G with 5 vertices in which every vertex of G lies on a cycle.
- 4. Draw all complete bipartite graphs with $p \le 3$ vertices.
- Draw all complete bipartite graphs with 6 vertices.
- Show that the following graphs are complete bipartite graphs. 6.

- Prove that if G is a regular bipartite graph with partite sets V, 7. and V_{ij} , then $V_{ij} = V_{ij}$.
- Show that every subgraph of a bipartite graph is bipartite. 8.
- 9. Define
 - i) a bipartite graph
 - a complete bipartite graph ii)
 - iii) a star with an example.

2.6 Characterization of Bipartite Graphs

We now present a chracterization of bipartite graphs in terms of its cycles.

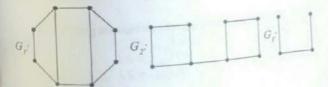
Theorem 2.8. A nontrivial graph is bipartite if and only if all of its cycles are even.

proof: If G is a bipartite graph, then its vertex set V can be partitioned proof. It is subsets V_1 and V_2 , so that every edge of G joins a vertex of V_2 . Suppose a cycle G is a vertex of V_2 . with a vertex of V_p . Suppose a cycle $C: v_1 v_2 \dots v_n$ is in G. Assume $v_1 \in V_p$. Then $v_2 \in V_p$, $v_3 \in V_p$, $v_4 \in V_p$, ..., $v_n \in V_p$ is in G. Assume $v_1 \in V_p$. This implies that $v_2 \in V_p$. for some positive integer s. Thus C has even length.

Conversely suppose without loss of generality, that G is connected, for otherwise, we can consider the components of G separately. Take any vertex $v_i \in V$. Let V_i consist of v_i and vertices at even distance from v_1 while $V_2 = V - V_p$. Since all cycles of G are even, every edge of G joins a vertex of V, with a vertex of V.

For further suppose there is an edge uv joining two vertices of V, then the union of two shortest paths from u and v, and from v, to v together with the edge uv contains an odd cycle. Thus a contradiction. Thus no two vertices of V_i are adjacent. Similarly no two vertices of V_i are adjacent. Thus G is a bipartite graph.

Example 29. Using characterization Theorem 2.8 show that the following graphs are bipartite graphs.

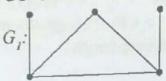


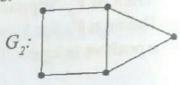
The graph G_I has only even cycles. Therefore by Theor Solution: 1) 2.8, G, is bipartite.

The graph G_2 has only even cycles. Thus by Theorem 2.8, ii)

The graph G_3 has only even cycles. Thus by Theorem 2.8 iii) is bipartite.

Example 30. Using characterization Theorem 2.8, show that following graphs are not bipartite graphs.



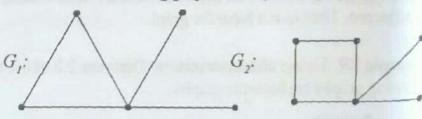


Solution:

- The graph G_1 contains a triangle. Thus by Theorem 2.8, G_2 1) not bipartite.
- The graph G_2 contains a cycle of length 5 which is odd cyc ii) Thus by Theorem 2.8, G_2 is not bipartite.

Exercise

Which of the following graphs are bipartite graphs?



- Which of the following graphs are bipartite graphs? 2.
 - i) K,
- iii) C_{2n} , $n \ge 2$
- $V) P_{2n}, n \ge 2$
- iv) C_{2n+p} , $n \ge 1$ vi) P_{2n+p} , $n \ge 1$